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By means of a diffusive description of spin-dependent thermal and electrical transport using Pauli-spin
matrices, we analyze the spin-dependent transport mechanisms that determine the voltage response of a me-
tallic spin valve to an ac temperature oscillation under steady current and the second-harmonic voltage re-
sponse to spin-torque induced oscillations of the magnetization of the layers. We show the extent to which both
measurements are sensitive to the relaxation of the transverse spin moment. The simulations of these signals
suggest an experimental protocol to characterize the decay of the spin-accumulation precession due to s-d
interaction in ferromagnets.
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I. INTRODUCTION

The notion that a spin-polarized current can act on the
magnetization was announced in two seminal papers by
Berger1 and Slonczewski.2 With time, it became clear that
this torque arises when the conduction electrons enter a layer
where the magnetization is not aligned with their spin polar-
ization and that this torque is linked to the absorption or
relaxation of the transverse component of the spin
polarization.3 The spin polarization is an out-of-equilibrium
property that arises when a current is driven through a mag-
netic nanostructure: a so-called spin accumulation builds up
in spin valves as a consequence of the differences in the
conductivities of each spin channel in successive layers.4

When the magnetizations of the two layers of a spin valve
are not collinear, the spin accumulation of the incoming elec-
trons is at an angle with respect to the magnetizations.5 For
Slonczewski,6 the length over which this transverse compo-
nent decays is of the order of 1 a.u., owing to the distribution
of the effective exchange field on the Fermi surface. How-
ever, Shpiro et al.,7 who described this decay in a self-
consistent model in a diffusive regime, estimated this decay
length to be in the range of a few nanometers.8

In this paper, we use a thermodynamic approach to de-
scribe heat, spin, and charge currents in magnetic nanostruc-
tures in noncollinear configurations. As reported by other
groups, we describe the spin and charge currents as tensorial
quantities using Pauli matrices.9 We follow the notation of
Zhang et al.10 A thermodynamic description of spin-
dependent transport was initiated by Johnson and
Silsbee,11,12 providing much information on spin accumula-
tion in a van der Pauw structure.13 This formalism allowed
Wegrowe et al.14 to express the details of s and d electron-
spin-relaxation processes. The Onsager matrix which links
generalized currents and generalized forces �gradients of
their associated potentials�15 brings forth automatically the
possibility of spin mixing.16 By definition, spin mixing is a
nonresistive process in the sense that the electron momentum
before and after a collision is conserved. In bulk materials,
spin mixing is expected due to the collision of electrons with
magnons.17,18 In spin valves, when a conduction electron en-
ters a magnetic layer from a nonmagnetic metal, its spin

experiences a sudden turn on of a magnetic field. The spin
dynamics are the extreme opposite to the adiabatic passage
as found, for example, when an electron crosses a domain
wall.19 Following Shpiro et al.,7 we express this with a Bloch
equation for the transverse spin accumulation �see Eq. �9�
below�. The precession here plays the role of spin mixing.
Brataas et al.5 instead used quantum mechanics to calculate
the spin-mixing conductivities at interfaces, thus setting the
boundary conditions for diffusive transport in each layer.
These calculations were later extended in order to include
thermal currents.20 Zhang and Levy21 studied the time-
dependent diffusion equation and compared that prediction
with the stationary diffusive model in the stationary limit, as
well as the predictions based on the Boltzmann transport
equation.22,23 Our thermodynamic description of spin-
dependent transport is sufficient to analyze two experimental
methods. One is the measurement of the derivative with re-
spect to the temperature of the resistance of the nanostructure
under test. The other is the measurement of the second-
harmonic response of a spin valve subjected to an alternating
current.

We call the first measurement the magnetothermogalvanic
voltage �MTGV�. It consists in enforcing a small oscillation
of the temperature of the sample and measuring its resistance
as a function of magnetic field.24 A small modulation of the
temperature T0 is produced by illuminating the sample with a
laser beam of about 10 W cm−2, chopped at a frequency of
14–22 Hz. A dc is driven through the structure and the ac
voltage is detected at the chopping frequency. The MTGV is
highly sensitive to phenomena that occur during reversible
switching of magnetic layers. Gravier et al.25 established the
link between MTGV and spin mixing through a three-current
model: a heat current and spin-up and spin-down electrical
currents. In this paper we compute the MTGV signal from
our noncollinear model and confirm its link to spin mixing in
the sense that we find that the signal depends on the tempera-
ture dependence of the decay length of the transverse com-
ponent of spin accumulation.

The second experiment analyzed in the framework of our
model is an electrical detection of the small perturbation of
the magnetization of the free layer of a spin valve, induced
by the spin torque due to spin-polarized currents. Kovalev et
al.,26 for example, calculated the deviation of magnetization
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orientations in spin valves due to spin torque. We follow the
concept to evaluate the double-frequency signal induced in a
spin-valve structure under a nonresonant current. We find
that this double-frequency detection can lead to a new ex-
perimental measurement of the characteristic length of the
relaxation of the transverse component of the spin-
accumulation vector.

The paper is structured as follows. In Sec. II we start from
Onsager relations linking generalized currents to their asso-
ciated forces. We express the coupling of the conduction-
electron spins to the magnetization in continuity equations in
order to develop the diffusive model. Section III presents the
results of simulations when we apply the model to a spin
valve or to two magnetic electrodes separated by a thin metal
layer. Simulations of MTGV and double-frequency signals
are described and analyzed. Finally, in Sec. IV, we discuss
the macrospin approximation of our model and the influence
of an inhomogeneous local magnetization on our results.

II. THERMODYNAMIC DESCRIPTION OF SPIN,
CHARGE, AND HEAT CURRENTS

A. Constitutive equation of currents and potential

We consider a one-dimensional �1D� model of a magnetic
multilayer with current flow perpendicular to the interfaces
�the variable x will be used as the spatial coordinates�. In Fig.
1 we have represented one magnetic layer to which we will
apply the following description. We will then apply this
model to a ferromagnetic-metal-nonmagnetic-metal-
ferromagnetic-metal �F/N/F� spin valve �Fig. 2� for compu-
tation.

We know that our samples have rather disordered inter-
faces because of the method of their production. So we con-
sider sufficient a semiclassical approach based on the devel-
opments made by Zhang et al.10 and Shpiro et al.7 The
diffusive nature of our samples implies also that thermaliza-
tion is obtained for the spin-up and spin-down channels, so
that we do not have to introduce a bias temperature as exists
in a ballistic treatment of a spin-valve system.19 The analysis
of Levy and Zhang,22,23 based on the Boltzmann equation in

Pauli space or the time-dependent diffusive description,21

shows the extent of corrections to the stationary diffusive
model7,10 in the case of sharp interfaces.

We also assume that the temperature gradient is small
enough so the conduction tensors are uniform in space to
first order, equal to their value at T0, the average temperature
of the structure. The Onsager reciprocal relations including
the thermal current27 are written in the Pauli space as
follows,28 expanding Zhang et al.10 and Shpiro et al.:7

ĵ�x� = Ĉ�E�x�Î +
1

e

��̂

�x
� − K̂

�T

�x
,

jq�x� = T0K̂:�E�x�Î +
1

e

��̂

�x
� − Tr�L̂�

�T

�x
, �1�

where E is the electric field, T the temperature, jq the heat

current, Î the identity matrix, and the symbol “:” refers to the
contracted product of two tensors. The current ĵ, the chemi-

cal potential �̂, and the Onsager coefficients Ĉ, K̂, and L̂ are
2�2 tensors, which can be decomposed on the Pauli-spin

matrix � and the identity matrix Î,

Ĉ = c0Î + cM · � , �2�

K̂ = k0Î + kM · � , �3�

L̂ = l0Î + lM · � , �4�

�̂ = �0Î + m · � , �5�

je = Re�Tr� ĵ�� ,

jm = Re�Tr� ĵ��� , �6�

where M is the unit vector representing the direction of local
magnetization of one layer and m has the dimensions of a
chemical potential. The generalized charge and spin accumu-
lation n̂ is proportional to the chemical potential with eN��F�
as the coefficient of proportionality, where N��F� is the den-
sity of states at the Fermi level,4

x

m (x) M

je

e2

e1

e3

FIG. 1. Schematics of one magnetic layer: M is the magnetiza-
tion, with �e1 ,e2 ,e3� as the local orthogonal basis of magnetization
defined by M �e1 is parallel to M shown here out of the plane of the
paper�. �T and �V are the temperature and potential drops, je the
charge current, and m�x� the spin-accumulation vector.
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FIG. 2. Ratio �−1 /�sf as a function of �J /�sf: slope of �2 and
asymptote of �2 for small and large values of �J /�sf, respectively.
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n̂ =� eN̂�E� f̂�E�dE = eN̂��F��̂ .

For convenience we note the generalized diagonal field,

E = E�x� +
1

e
Tr� ��̂

�x
� . �7�

We express now the equations of continuity for the cur-
rents in the stationary regime. The spin accumulation pre-
cesses around the local magnetization M due to the s-d in-
teraction and relaxes due to the spin-flip scattering of
conduction electrons with a characteristic time tsf.

7,10 In Eq.
�9� below, we deduce the motion of m from the equation of
motion of spin accumulation n̂, with �sf= tsf /eN��F� and g
=JeN��F� /	 are the rescaled parameters of spin flip and spin
precession and J the exchange interaction between conduc-
tion electrons and the local magnetization through s-d
interactions.10 Dissipation arises from the Joule effect, which
is written in Pauli space as the trace of the product of the
gradient of potentials �chemical and electrical� and the cur-
rent ĵ. Thus we obtain the three dispersion equations,

dje

dx
= 0, �8�

djm

dx
=

m

�sf
+ gM ∧ m , �9�

djq

dx
= Tr	�E�x�Î +

1

e

d�̂

dx
� ĵ
 . �10�

1. Nonmagnetic layers

In nonmagnetic layers, transport matrices �2�–�4� are di-
agonal. We introduce the following notations:

Ĉ = cNÎ , �11�

K̂ = kNÎ , �12�

L̂ = lNÎ . �13�

We develop the transport equation �Eq. �1�� using definitions
�11�–�13� to obtain

je = 2	cNE − kN
dT

dx

 ,

jm = 2	cN
1

e

dm

dx

 ,

jq = 2	TkNE − lN
dT

dx

 . �14�

By substituting Eq. �14� into the continuity �Eqs.
�8�–�10�� with M=0, we obtain the diffusion equation for the
chemical-potential vector and a differential equation for the

electrical field, including a term for Joule heating,

cN

e

d2m

dx2 =
m

2�N
, �15�

2	T0kN −
lNcN

kN

dE

dx
= Eje +

cN

e2 �dm

dx
�2

. �16�

Defining the spin-diffusion length q−1=�2�NcNe−1, the gen-
eral solution of Eq. �15� is

m = m�+� exp�qx� + m�−� exp�− qx� . �17�

In nonmagnetic metals such as copper the spin-diffusion
length can be of the order of a few hundreds of nanometers at
room temperature.29,30 But in electrodeposited Co/Cu/Co
spin valves, the process introduces Co impurities that reduce
the spin-diffusion length in copper to 40 nm.31,32 As for the
characteristic length �T0kN− lNcNkN

−1�je
−1, it is more than a

hundred of microns for current densities of the order of
106 A /cm2. Thus we can overlook the right-hand term in
Eq. �16� and consider E constant in a nonferromagnetic layer.

2. Magnetic layers

We will consider that the magnetization M of a magnetic
layer is homogeneous in the following development. Substi-
tuting expressions �2�–�6� into the transport equation �Eq.
�1��, we can decompose ĵ into currents of charge, spin, and
heat,

je = 2	c0E − k0
dT

dx
+

c

e
M ·

dm

dx

 ,

jm = 2	�cE − k
dT

dx
�M +

c0

e

dm

dx

 ,

jq = 2	T0k0E − l0
dT

dx
+

T0k

e
M ·

dm

dx

 . �18�

We substitute Eq. �18� into the continuity equations �Eqs.
�8�–�10�� and split m into longitudinal �parallel to M� and
transverse �perpendicular to M� components. Intermediary
results are given in the Appendix �Eqs. �A2�–�A5��, where
we introduce for convenience the parameters u and v,

u = k0c − c0k ,

v = k0c0 − ck . �19�

Thus, keeping only linear terms, we find the differential
equations for the diffusion of m,

P0F�m�� + P1m� + P2
dm�

dx
+ P3

d2m�

dx2 = 0, �20�

c0

e

d2m�

dx2 =
m�

2�sf
+

g

2
M ∧ m�, �21�

where F�m��=
0
xm�dx+cte is a primitive of the longitudinal

component and the following coefficients are defined:
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P0 = −
k0

4�sfu
je,

P1 =
�T0k0

2 − l0c0�
2u�sf

,

P2 = � v
2eu

−
k

2ek0
� je,

P3 =
1

e
	�T0k −

l0c

k0
� − �T0k0 −

l0c0

k0
�v

u

 . �22�

It is remarkable that in Eq. �21�, the transverse momentum is
not affected by the presence of a temperature or potential
gradient. For convenience we write m� as a complex vector,

m� = Re�m��e2 + Im�m��e3,

and the solution of Eq. �21� in the complex space C is given
by

m� = m�+� exp��� + i
�x� + m�−� exp�− �� + i
�x� , �23�

where � and 
 are the real and imaginary parts of the root of
Eq. �21�,

� + i
 = � e

2c0�sf
+ i

eg

2c0
�1/2

. �24�

Thus �−1 is the relaxation length of the transverse momentum
and 
 the rotation angle per unit length of the transverse
momentum vector.

The structure of Eq. �20� is the following. The left-hand
side contains two terms that come from the relaxation of m
�Eq. �9�� and two terms that come from Joule heating �Eq.
�10��. There are additional quadratic terms that would corre-
spond to the dissipation of the longitudinal and transverse
components of the chemical-potential vector m. We verified
that these are of second order and can be neglected. The
characteristic polynomial of Eq. �20�, P�x�= P0+ P1x+ P2x2

+ P3x3, has roots that are close to those of the diffusion equa-
tion with only P1 and P3, that is, the diffusion equation for
m� without Joule effects,

r1 = −�−
P1

P3
+

P3P0 − P1

2P2
�− P1P3 + 2P1P3

,

r2 =�−
P1

P3
−

P3P0 − P1

2P2
�− P1P3 − 2P1P3

,

r3 = −
P0

P1
. �25�

So, the general solution F0�m�� has the following general
form:

F0�m�� = a1 exp�r1x� + a2 exp�r2x� + a3 exp�r3x� . �26�

Referring to Eq. �21�, we define �sf=�c0�sf /e and �J

=�c0 /ge, which are the characteristic length scales of spin-

flip scattering and precession processes. The longitudinal
spin-diffusion length �sdl�−r1

−1�r2
−1 is close to �sf, whereas

the relaxation length of transverse momentum �−1 arises
from a combination of both processes. Depending on the
ratio �J /�sf, we find two regimes: when �J /�sf is small, m�

decays faster than m�; on the contrary when �J is longer than
�sf, then the absorption of m� is mostly due to spin-flip
scattering processes, which relax m� also, and �−1 and �sdl are
of similar values �Fig. 2�.

To our knowledge, there are no experimental values for �J
in transport conditions in metallic spin valves. Yet Weber et
al.33 measured the precession of the spin polarization of a hot
electron beam passing through a ferromagnetic layer of a few
nanometers and reported equivalent 
−1 of 11 nm for Fe, 50
nm for Ni, and 19 nm for Co. If we follow the theoretical
estimates of a few nanometers for �J by Zhang et al.,10

�J /�sf may not necessary be small for all material, as �sf can
be of only a few nanometers: for example, in Permalloy �sf
have been measured around 5 nm at room temperature34 and
3 nm for Ni93Cr3 alloy at 4.2 K.35 On the other hand, �sf has
been measured to be about 40 nm in cobalt at room
temperature36 so we should be clearly in the regime of strong
of �J /�sf�1. We examine further the influence of the ratio
�J /�sf on transport measurements by the simulations de-
scribed in Secs. III and IV.

B. Boundary conditions and solutions

As boundary conditions of the system, we assume conti-
nuity of the electrical and chemical potentials, temperature
and currents, and the nondivergence of the chemical poten-
tial as the length goes to infinity. This means that we do not
take into account specular or diffusive scattering due to the
interfaces, though they could in theory be inserted into the
model through scattering matrix relations �see, e.g., Ref. 5�.
Generally speaking, as solutions of the equations are a linear
combination of exponential terms, these boundary conditions
lead to a system of linear equations where the variables are
the coefficients of the exponentials, the charge current den-
sity je and the potential drop �V and the temperature drop
�T between the ends of the system.

We now consider a F/N/F spin valve in a noncollinear
configuration �Fig. 2�, with the angle � between the orienta-
tions of the layer magnetizations M1 and M2. For clarity, we
simplify the structure to two equally thin cobalt layers sepa-
rated by a thin copper layer and connected by copper leads
that are much longer than the spin-diffusion length. Calcula-
tions are detailed in the Appendix. The continuity conditions
at both interfaces lead to 30 �Eqs. �A11�–�A21��. Replacing
the chemical-potential functions by their expressions
�A6�–�A10�, we obtain a bilinear system from Eqs.
�A11�–�A21�,

�
1
i
30

�ki�i = wkje + uk�T �1 
 k 
 30� . �27�

The unknown parameters �i are the potential drop �V, the
electrical field in the nonmagnetic layers �E�−� ,EN ,E�+��, and
the 24 parameters of the chemical-potential vector in the five
layers �see Appendix�. For 1
k
30, ��ki�, ��kij�, �wk�, and
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�uk� are coefficients given by the kth equation.
Now we write the bilinear system in a more comprehen-

sive algebraic expression. We note S the matrix of ��ki� co-
efficients, W the column vector of �wk� coefficients, and U
the column vector of �uk� coefficients. We decompose the
vector of unknown variables X0, and we write Eq. �27� in the
following expression:

SX0 = Wje + U�T . �28�

Thus we compute the giant magnetoresistance �GMR� R and
the Seebeck coefficient � to first order with the formula

�V = �S−1W��1�je + �S−1U��1��T = RI + ��T . �29�

III. RESULTS

A. GMR, thermoelectric power coefficient, and chemical-
potential vector

We investigate the response of the structure described in
Fig. 3 to �T, je, and �. The cross-sectional area of the nano-
wire is considered to be 100�100 nm2, the lengths of the
nonmagnetic leads are 3000 nm, the ferromagnetic layers are
30 nm thick, and the nonmagnetic spacer layer is 4 nm thick.
We use in our calculations the transport parameters of cobalt
and copper used by Gravier et al.24 which for convenience

are listed in Table I. The dimensionless coefficients � and �
define the asymmetry of the spin-dependent conductivity and
Seebeck coefficients,

Ĉ = c0�Î + �M · �� ,

�̂ = Ĉ−1K̂ = �0�Î + �M · �� .

Hence the generalized conductivity is

K̂ = Ĉ�̂ = �c0Î + cM · ����0Î + �M · ��

= c0�0�1 + ���Î + c0�0�� + ��M · � .

This development yields readily

k0 = ��↑c↑ + �↓c↓� = �0c0�1 + ���,

k = ��↑c↑ − �↓c↓� = �0c0�� + �� .

We use the value of the copper spin-diffusion length
found by Doudin et al.,31 owing to the presence of Co impu-
rities in the copper layers produced by electrodeposition. For
cobalt, we adjust �sf to obtain the same scale of �sdl�−r1

−1

�r2
−1 of 50 nm. We vary �J arbitrarily, even to unrealistic

values for cobalt, in order to explore the influence of �J /�sf
ratio on the response of the structure, especially on MTGV
and double-frequency simulations to be detailed in Secs.
III B and III C.

Figures 4 and 5 show the GMR and Seebeck coefficient,
respectively, and Figs. 6–8 the dependence of the chemical-
potential vector m on the angle between the two layers for
several values of �J /�sf. The GMR peak is affected by the
ratio �J /�sf: the larger �J /�sf is, the broader the peak is, and
the GMR peak tends toward a cosine shape when �J /�sf
�0.5.

As we mentioned previously, when the relaxation of the
chemical potential through precession is weak compared to
the spin-flip scattering mechanism, then the transverse and
longitudinal components decay over the same length, and the
situation is analogous to the transmission of light through
polarizers. Hence, the cosine dependence appears in this
limit. In effect, the transverse component at the x=−l inter-
face, m2, �Fig. 7� which is in the plane defined by M1 and
M2, increases with �J and tends toward sin �. On the con-
trary, the out-of-plane component of the spin-accumulation
vector, m3 �Fig. 8�, vanishes at values of �J��sf. This is
because m3 is essentially created by the spin-current conti-

N F N NF
-L L

x

d1-1-d

e2

e1

e3
je

M1

M2

e1

FIG. 3. Schematics of a F/N/F spin valve in noncollinear orien-
tation: M1 and M2 are the magnetizations of the two layers, � is the
angle between M1 and M2, and �e1 ,e2 ,e3� and ��1 ,�2 ,�3� are the
local orthogonal basis of space, with e3=�3 normal to both magne-
tization. �T and �V are the temperature and potential drops and je

is the charge current. The ends of the ferromagnetic layers are lo-
cated at x= �L, L being long compared to all relaxation lengths,
and the interfaces F/N at x= � l and x= �d.

TABLE I. Numerical values used in the calculations, as used in Gravier et al. �Ref. 25� for electrodepos-
ited Co-Cu multilayers.

T �K� Co Cu

� �� m� 2.64�10−7+T�2.84�10−9� 6.67�10−8+T�6.86�10−10�
�=c /c0 0.454−T�1.15�10−4�
�0�N �V/K� −2.7�10−6−T�0.1�10−6� −0.084�10−6T

�=� /�0 0.41

l �W /m K� 100 400

�sdl �nm� 50 40
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nuity at interfaces, which links m3 to m2 through the param-
eter 
 �Eq. �24�� giving the rotation per unit length. Though
m3 vanishes for large �J /�sf, m3 reaches a maximum when
�J /�sf is close to 0.5. When �J is very small compared to �sf,
we are in the regime in which spins that are not eigenstates
of the spin Hamiltonian relax quickly. Then, spin accumula-
tion does not develop until the layers are very near the anti-
parallel configuration, thus resulting in a sharp upturn of the
GMR �Fig. 4� and a small accumulation in the transverse
component at the interfaces �Fig. 6�. Even though we have
not taken into account scattering due purely to the interfaces,
which would be superposed on the effects described here,
our calculation of the GMR response gives comparable re-
sults with those given by the treatment using magnetoelec-
tronic circuit theory of Brataas et al.5

The structure of Eq. �29� suggests a strong similarity in
shape between the GMR and the effective Seebeck coeffi-
cient, as indeed confirmed by the simulations depicted in
Figs. 4 and 5 and by experimental data of GMR and thermo-
electric power �TEP� in multilayers.37 The order of magni-
tude of the TEP is about 25 �V /K at 300 K, whereas the
resistance is about 276 �. This means that a temperature

drop of 1 K creates the same voltage drop as a current of 20
nA in the nanopillar of 100�100 nm2, that is, a current
density of 2�102 A /cm2 only. The spin-accumulation vec-
tor created by the temperature gradient presents the same
angular dependence as that created by charge current, but its
amplitude is about 10−9 eV for a temperature drop of 1 K,
compared to 10−4 eV for a current of 100 �A. Hence it is
practically impossible to create spin torque with a tempera-
ture gradient in metallic spin valves.

B. MTGV simulation

Gravier et al.24 showed that MTGV is highly sensitive to
the temperature-dependent change in the spin-mixing rates
between the up and down channels. In Ref. 24, spin mixing
is introduced in a representation where spin is only in up and
down states. Collisions with magnons induce spin flips be-
tween these two states. Here we are considering the preces-
sion of spins around the exchange field, which corresponds
to transitions between the up and down states of the spin
quantized along the axis parallel to the exchange field, the
rate of which are given by the Rabi formula. Thus we expect

0
0

1

2

2.5

0.5

1.5

FIG. 6. Modulus of m� �dashed line� and m� �solid line� at F/N
interface for a current of 6�106 A /cm2, �T of 1 K, and �J /�sf

=0.05.
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FIG. 7. Transverse component m2, parallel to M1� �M1�M2�,
as a function of �, for several �J /�sf: 0.02 �solid line�, 0.05 �dashed-
dotted line�, 0.2 �dashed line�, 0.5 �dotted line�, and 1 �gray dots�.
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0.02 �solid line with dots�, 0.05 �solid line�, 0.2 �dashed line�, and
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that the MTGV is sensitive to the transverse component m�

and to its relaxation.
In order to reproduce the experimental protocol in simu-

lation we add to the base temperature T0 �300 K� and to the
temperature gradient �T a small sinusoidal temperature os-
cillation with an amplitude of 1 K. Thus, every coefficient of
transport, provided it has temperature dependence, is oscil-
lating with T0 at the chopping frequency. We set the current
density at 4�106 A /cm2, which corresponds to a dc of
400 �A through the nanopillar and is the order of magnitude
of the current used in MTGV experiments.20 In this calcula-
tion, the MTGV is given by the first harmonic of the voltage
response �V �Eq. �29��.

The dependence of MTGV on the angle � is displayed in
Fig. 9. The MTGV curves correspond to several values of �J.
We identify the contribution of the transverse component of
m to the MTGV as follows. When we compare the calcu-
lated MTGV with the transverse components of m� �Figs. 7
and 8�, we notice that the MTGV peaks behave like m3 �Fig.
8�. We recall that m3 is induced purely by precession of m�.
Like m3, the MTGV peak is the largest when �J is about half
of �sf. Both decrease at larger values of �J because the spin-
relaxation wave vector 
 �Eq. �23�� decreases with increas-
ing �J. Also, MTGV peaks broaden toward �= �� /2 when
�J increases, as the maxima of m� do �Fig. 9�.

When we compare these simulations to the experimental
data obtained in five-bilayer structures of alternating Co/Cu
layers embedded in a copper nanopillar,38 we find that the
observed MTGV peaks are often of about the same order of
magnitude but sometimes an order of magnitude larger than
the simulation. The discrepancy may arise from the fact that
the layers and interfaces are inhomogeneous in structures
obtained by electrodeposition and, as we will discuss below,
the inhomogeneities in the magnetization is expected to en-
hance the MTGV signal. It was pointed out that the observed
peaks in the MTGV measurement occur when layers switch
reversibly from parallel to antiparallel configurations and
vice versa �that is from �=0 to �=��, i.e., when noncollinear
states may be reached in a quasistatic field sweep.

We have studied the dependence of MTGV on the consti-
tutive parameters of transport, especially those that change

with temperature. It appears from the simulations that the
MTGV is essentially caused by the temperature dependence
of �J. As �J=�c0 /ge, it depends on temperature at room
temperature essentially because of the conductivity depen-
dence,

��J

�T
�J =

1

2c0

�c0

�T
−

1

2g

�g

�T
.

The relation between MTGV and transverse moment be-
comes clear when we make the derivative of Eq. �29� with
respect to �J,

��V

��J
= − S−1 �S

��J
�V0. �30�

�V0 is the voltage response at the average of the oscillating
temperature T0 in Eq. �29�. The matrix dS

d�J
contains only

terms coming from the derivative of � and 
. This implies
that the MTGV signal is proportional to the transverse mo-
ment �see Eqs. �A13� and �A14��. In order to make more
explicit the importance of the relaxation of the transverse
moment on the MTGV signal, we show in Fig. 10 what the
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�M2, as a function of �, for several �J /�sf: 0.02 �solid line�, 0.05
�dashed-dotted line�, 0.2 �dashed line�, 0.5 �dotted line�, and 1
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FIG. 9. MTGV response as a function of � for several �J /�sf:
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MTGV response becomes when the temperature dependence
of �J is canceled. There is still a signal, with similar angular
dependence. It arises simply from the temperature depen-
dence of the conductivity.

C. Nonlinearity and second-harmonic signal

Oscillations of the layers’ magnetizations due to oscillat-
ing current can introduce a signal at double frequency of the
oscillating current. Indeed, spin torque and the induced field
created by the current produce a perturbation of the equilib-
rium position imposed by the external field on the layers.
Following Barnas et al.,39 we determine the momentum
transferred to the free layer �the calculations are carried out
assuming one layer is fixed� as the difference between the
spin-current entering and leaving the layer,

�� =
�B

e
�jm�L� − jm�l��S , �31�

where S is the cross-sectional area of the nanopillar and �B is
the Bohr magneton. Thus when we compute the equivalent
field that would be applied to the magnetization in the pres-
ence of such an oscillating current, we find it to be about 100
G. So the induced field due to current passing through the
circuit coil is small compared to spin torque �0.1 G compared
to 100 G�, thus we consider only the deviation of theta cre-
ated by the spin torque.

Now we refer to the formula of Kovalev et al.26 and esti-
mate �� with

���� = � c0�B

2e2L�Ms
2�N2N3 − N23

2 ��N23
dm2

dx
+ N3

dm3

dx
�sin���� ,

�32�

where � is the gyromagnetic ratio, L is the length of the
layer, Ms is the saturation magnetization, and Ni are the de-
magnetization coefficients of the free energy at equilibrium
of the macrospin magnetization with which we model the
free layer,

F�M� = F�M1� +
N2

2
M2

2 +
N3

2
M3

2 + N23M2M3. �33�

In Eq. �32�, we have neglected all terms at the frequency
of the current for this is far below the resonance frequency.
For the calculation we chose Ms=106 A m−1, we set d at 30
nm, and we chose N2=0.2�0, N3=�0, and N23=0 �Ni /�0 are
between 0 and 1�. The perturbation of the angle � is depicted
in Fig. 11 for several values of �J /�sf. �� is about 10−2 rad
in magnitude. Like the spin torque, it decreases with increas-
ing �J, that is, with decreasing strength of the interaction
between conduction electrons and the local magnetization.
Figure 12 shows the dependence on � of the modulus of the
second-harmonic Fourier coefficient of the �V response for
several values of �J. The double-frequency response is ex-
tremely sensitive to ��: it gives about a few microvolts for a
deviation of only 10−2 rad. Compared to this response, the
perturbation voltage due to the quadratic terms, neglected in
Eq. �20�, was found to be of about 10−8 V for a current
density of 6�106 A /cm2. The peaks of MTGV are located

between the maxima of �� and of �R
�� . The peaks of the sec-

ond harmonic behave the same way as those of the MTGV
and occur at the same angles �Fig. 9�: they get broader and
move toward �= �� /2 as �J /�sf increases. Yet whereas the
amplitude of the MTGV is at a maximum when �J /�sf is
close to 0.5, the second harmonic decreases much more
quickly with �J. This is due to the fact that the second har-
monic detects the spin current and not the chemical potential.
When we compare Fig. 12 with Fig. 4, we find that the
second-harmonic peaks occur when GMR is about halfway
through the rise. The position of the peaks on a � scale tends
toward � when �J /�sf decreases and the peaks get sharper
and bigger. We notice also that the ratio between the width
and the height of the peaks is a very sensitive function of
�J /�sf. So, if we are able to control the angle � between the
two layer magnetizations, the double-frequency measure-
ment would enable us to determine �J: either by looking at
the position of the maximum of the peak, which give a rather
rough estimation, or by computing the ratio between the
width and the height of the peak, which should be a more
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FIG. 11. �� as a function of the equilibrium angle between the
layers, je=6�106 A /cm2, �T=0 K, and �J /�sf: 0.02 �solid line
with dots�, 0.05 �solid line�, 0.2 �dashed-dotted line�, 0.5 �dashed
line�, and 2 �gray dots�.
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FIG. 12. Calculation of double-frequency response as a function
of � and �J, je=6�106 A /cm2, �T=0 K, and �J /�sf: 0.02 �solid
line with dots�, 0.05�solid line�, 0.2 �dashed-dotted line�, 0.5
�dashed line�, and 2 �gray dots�.

JULIE DUBOIS AND JEAN-PHILIPPE ANSERMET PHYSICAL REVIEW B 78, 184430 �2008�

184430-8



precise method, especially for small �J /�sf. While this analy-
sis enables us to point to a possible measurement method, the
interpretation of actual data will have to be done keeping in
mind that the present predictions result from a simple diffu-
sive model and that a better account of interface scattering
might be necessary for the data to yield a correct value of
�J.

8,26

IV. DISCUSSION

As we mention before, the macrospin approximation used
to solve the constitutive equation lets us understand the phys-
ics underlined by equations but it is a rough approximation.
In fact, spatial inhomogeneities in the local layer magnetiza-
tion orientation induce relaxation of the chemical potential
through precession all through the layer and not only at the
F/N interface. In other words, the spin-mixing process is en-
hanced by magnetization inhomogeneity.

The special variation in magnetization introduces new
terms in Eq. �18� that becomes

2	c0

dE
dx

− k0
d2T

dx2 + cM ·
1

e

d2m

dx2 + c
dM

dx
·

1

e

dm

dx

 = 0,

�34�

2	�c
dE
dx

− k
d2T

dx2 � · M + �cE − k
dT

dx
� ·

dM

dx
+ c0

1

e

d2m

dx2 

=

m

�sf
+ gM ∧ m , �35�

2	T0k0

dE
dx

− l0
d2T

dx2 + T0kM ·
1

e

d2m

dx2 + T0k
dM

dx
·

1

e

dm

dx



= �E�x� · Î +
1

e

d�̂

dx
�: ĵ . �36�

In order to keep the expressions not too heavy, we overlook
Joule heating terms �P0= P2=0�. This leads us to modify the
differential equations �Eqs. �20� and �21�� so as to obtain

1

e
� u

k0

T0kk0 − l0c

T0k0
2 − l0c0

−
kc

k0
��d2m�

dx2 +
dm�

dx

dM

dx
� +

c0

e

d2m�

dx2

=
m�

2�sf
�37�

� u

k0

T0kk0 − l0c

T0k0
2 − l0c0

−
kc

k0
�dm�

edx

dM

dx

+
1

2
� k

k0
je +

jqk0 − l0je

T0k0
2 − l0c0

�dM

dx
+

c0

e

d2m�

dx2

=
m�

2�sf
+

g

2
M ∧ m . �38�

Without solving these equations, we can already discuss their
significance. The transverse and longitudinal components of
m are now coupled by terms depending on the gradient of

M. Qualitatively, when dM
dx is small, i.e., when the typical

length scale of variation in M is long compared to �sf, the
longitudinal component relaxes before there is much change
in the magnetization orientation. So the two equations are
decoupled and the relaxation lengths �sdl and �−1 are not very
much affected. On the contrary, when the typical length scale
of variation in M is of the same order or even shorter than
�sf, a great part of m� is transferred to m� due to the reori-
entation of M and relaxation is dominated by spin preces-
sion. This is expressed in Eqs. �37� and �38� by the fact that
coupling terms become important. When we calculate the
roots of the characteristic polynomial of Eq. �35�, we find
that �−1 increases and �sdl decreases. Thus, relaxation
through spin mixing is dramatically enhanced with an inho-
mogeneous M.

V. CONCLUSION

We proposed a diffusive model to describe thermoelectri-
cal transport in magnetic multilayers using the linear space
defined by Pauli matrices to describe the spin current and the
generalized electrochemical potential. We applied this model
to a spin valve, assuming one layer pinned, in order to in-
vestigate the origin of the sharp field-dependent peaks in the
experimentally observed MTGV, a measurement of the tem-
perature derivative of the resistance. These simulations con-
firm that MTGV is able to detect spin-mixing effects through
the temperature dependence of the length scale �J that de-
fines the relaxation of the spin accumulation normal to the
magnetization. At room temperature, a dominant contribu-
tion to this temperature dependence is that of the conductiv-
ity. We compute also the second-harmonic amplitude of the
voltage response created by the ac spin-torque perturbation
on the magnetization of the layers. Our estimate leads to
several microvolts of response for a current density of sev-
eral 106 A /cm2, that is, detectable at current densities below
the critical values that are able to destabilize the magnetiza-
tion of the layers and far away from resonance also. Specifi-
cally, this second-harmonic response has a strong depen-
dence on �J /�sf; thus, it may provide a new measure of the
relaxation length �J. Finally, we discuss the possibility of a
large enhancement of these spin-mixing effects by magnetic
inhomogeneities. Thus MTGV and the second-harmonic re-
sponse are measurements that are able to characterize the
relaxation of the transverse spin accumulation.

APPENDIX

The studied structure �Fig. 3� consists in a spin-valve
F/N/F. We note � the angle between the orientations of the
layer magnetizations. �e1 ,e2 ,e3� and ��1 ,�2 ,�3� are the local
bases for left and right cobalt magnetizations, with e1 and �1
parallel to local magnetization. The relations between the
bases are

�1 = cos���e1 + sin���e2,

�2 = − sin���e1 + cos���e2,
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�3 = e3. �A1�

1. Expression of E, dT Õdx, and currents in a ferromagnetic
layer

We refer to the notations introduced in Fig. 1. In one
ferromagnetic layer, the expressions of the generalized elec-
trical field, the gradient of temperature, and the currents are
given by integrating Eq. �9� and replacing the various ex-
pressions of Eq. �18�,

E =
k0

2�u
F�m�� −

v
eu

dm�

dx
, �A2�

dT

dx
=

c0

2u�sf
F�m�� +

cu − c0v
ek0u

dm�

dx
−

je

2k0
, �A3�

jq

2
= P1F�m�� + P3

dm�

dx
+

l0

2k0
je, �A4�

jm

2
= �F�m��

2�sf
+

k

2k0
je�e1 +

c0

e

dm�

dx
. �A5�

2. Expression of solutions

From the forms of solution found in Eqs. �17�, �23�, and
�26� we express the chemical potential in each layer. In the
right ferromagnetic layer, the chemical potential n
= �n1 ,n2 ,n3� is decomposed on the base ��1 ,�2 ,�3�. �n2 ,n3�
can be written in the form below, where n�+� and n�−� are
complex numbers,

n2 = Re�n�+�e
��+i
��x−l� + n�−�e

−��+i
��x−l�� ,

n3 = Im�n�+�e
��+i
��x−l� + n�−�e

−��+i
��x−l�� , �A6�

F�n1� = a1er1�x−l� + a2er2�x−l� + a3er3�x−l�. �A7�

In the left ferromagnetic layer, the chemical potential m
= �m1 ,m2 ,m3� is decomposed on the base �e1 ,e2 ,e3�.
�m2 ,m3� can be written in the form of Eq. �A8�, where m�+�
and m�−� are complex numbers,

m2 = Re�m�+�e
��+i
��x−l� + m�−�e

−��+i
��x−l�� ,

m3 = Im�m�+�e
��+i
��x−l� + m�−�e

−��+i
��x−l�� , �A8�

F�m1� = b1er1�x−l� + b2er2�x−l� + b3er3�x−l�. �A9�

In the nonmagnetic spacer, in the base �e1 ,e2 ,e3�, the
chemical-potential vector p is linked to two vectors A
= �A1 ,A2 ,A3� and B= �B1 ,B2 ,B3�,

p = A cosh�qx� + B sinh�qx� . �A10�

In the nonmagnetic electrodes, the chemical potential taken
decreases exponentially from the F/N interfaces to the ex-
tremities of the electrodes. In the left electrode it is equal to

p�−� exp�q�x−d��, with p�−�= �p1
�−� , p2

�−� , p3
�−�� in �e1 ,e2 ,e3�. In

the right electrode it is equal to p�+� exp�−q�x−d��, with
p�+�= �p1

�+� , p2
�+� , p3

�+�� in ��1 ,�2 ,�3�. We will also note EN and
E�+�E�−� the electrical field in the nonmagnetic spacer and the
right electrode and the left electrode.

3. Boundary condition matrix

Using expressions �A2�–�A5�, we express the continuity
of potential and currents on both interfaces at �l: chemical
potential,

m1�− l� = A1 cosh�ql� − B1 sinh�ql� ,

m2�− l� = A2 cosh�ql� − B2 sinh�ql� ,

m3�− l� = A3 cosh�ql� − B3 sinh�ql� , �A11�

n1�l�cos��� − n2�l�sin��� = A1 cosh�ql� + B1 sinh�ql� ,

n1�l�sin��� + n2�l�cos��� = A2 cosh�ql� + B2 sinh�ql� ,

n3�l� = A3 cosh�ql� + B3 sinh�ql� , �A12�

spin current,

F�m1��− l�
2�sf

+
k

2k0
je =

cNq

e
�− A1 sinh�ql� + B1 cosh�ql�� ,

c0

e

dm2

dx
�− l� =

cNq

e
�− A2 sinh�ql� + B2 cosh�ql�� ,

c0

e

dm3

dx
�− l� =

cNq

e
�− A3 sinh�ql� + B3 cosh�ql�� ,

�A13�

F�n1��l�
2�sf

+
k

2k0
je =

cNq

e
��A1 sinh�ql� + B1 cosh�ql��cos���

+ �A2 sinh�ql� + B2 cosh�ql��sin���� ,

c0

e

dn2

dx
�l� =

cNq

e
�− �A1 sinh�ql� + B1 cosh�ql��sin���

+ �A2 sinh�ql� + B2 cosh�ql��cos���� ,

c0

e

dn3

dx
�l� =

cNq

e
�A3 sinh�ql� + B3 cosh�ql�� , �A14�

and heat current,

P1F�m1��− l� + P3
dm1

dx
�− l� +

l0

2k0
je

= �T0kN −
lNcN

kN
�EN +

lN

2kN
je,
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P1F�n1��l� + P3
dn1

dx
�l� +

l0

2k0
je = �T0kN −

lNcN

kN
�EN +

lN

2kN
je.

�A15�

We obtain equations of the same form when expressing the
continuity of potential and currents on the interfaces between
ferromagnetic layers and nonmagnetic electrodes at �d:
chemical potential,

m1�− d� = p1
�−�,

m2�− d� = p2
�−�,

m3�− d� = p3
�−�, �A16�

n1�d� = p1
�+�,

n2�d� = p2
�+�,

n3�d� = p3
�+�, �A17�

F�m1��− d�
2�sf

+
k

2k0
je =

cNq

e
p1

�−�,

c0

e

dm2

dx
�− d� =

cNq

e
p2

�−�,

c0

e

dm3

dx
�− d� =

cNq

e
p3

�−�, �A18�

spin current,

F�n1�
2�sf

�d� +
k

2k0
je = −

cNq

e
p1

�+�,

c0

e

dn2

dx
�d� = −

cNq

e
p2

�+�,

c0

e

dn3

dx
�d� = −

cNq

e
p3

�+�, �A19�

and heat current,

P1F�m1��− d� + P3
dm1

dx
�− d� +

l0

2k0
je

= �T0kN −
lNcN

kN
�E�−� +

lN

2kN
je,

P1F�n1��d� + P3
dn1

dx
�d� +

l0

2k0
je = �T0kN −

lNcN

kN
�E�+� +

lN

2kN
je.

Finally we write the continuity of temperature and electro-
static potential over the structure: temperature,

�T = �
−d

−l � c0

2u�sf
F�m1� +

cu − c0v
ek0u

dm1

dx
�dx

+ �
l

d � c0

2u�sf
F�n1� +

cu − c0v
ek0u

dn1

dx
�dx −

�d − l�
k0

je

+ 2l
cN

kN
EN − l

je

kN
+ �L − d�

cN

kN
�E�+� + E�−�� − �L − d�

je

kN
,

�A20�

and electrostatic potential,

− �V = �
−d

−l � k0

2u�sf
F�m1� −

v
eu

dm1

dx
�dx + �

l

d � k0

2u�sf
F�n1�

−
v
eu

dn1

dx
�dx + 2lEN + �L − d��E�+� + E�−�� . �A21�
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